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ABSTRACT

Analysis of Interactions Between Soil and Water

James S. Tyler
Department of Mathematics, BYU
Master of Science

In this project, we discuss different methods for analyzing relationships between
soil and water. We carry out two studies, the first analyzing the flow of nutrients
through an ecosystem as measured by analyzing stream data, and the second de-
veloping a model to predict soil water content from soil temperature. We use both
traditional “mechanistic” approaches and more modern “characteristic” approaches
on both data sets in order to form predictive models. We develop a novel Non-
Uniform Label Smoothing (NULS) [3] technique in a Deep Neural Network (DNN)
environment to create a predictive model which performs well on the second study,
and yet fails to do so on the first. This new technique helps with uncertainty quan-
tification of the predictive model [1] in a way that is typically quite difficult to do in
a regression context. We discuss the pros and cons of mechanistic and characteristic
approaches for these two studies. We relate our work to the role of the Data Ana-
lyst in modern America as “big data” becomes more abundant and DNNs become
cheaper to implement and more accessible then ever [27].
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CHAPTER 1. MATHEMATICAL BACKGROUND

1.1 RESEARCH INTRODUCTION

The efficient use of soil and water is essential to sustain and maintain the human
population on a planet with limited resources [32]. As such, understanding soil and
water interactions is key to a flourishing society. A better understanding allows
for more efficient preservation of current ecosystems as well as better use of the
agricultural resources at our disposal.

In this paper, we explore methods for analyzing the relationship between soil and
water in multiple contexts. We do so in order to better understand nutrient flow
through an ecosystem and to improve agricultural appropriation of resources. We
also illustrate novel data analysis techniques utilizing deep neural networks in an
effort to compare their effectiveness to more traditional methods of data analysis.

Our first study will be an experimental analysis of water samples recovered as
runoff from areas affected recently by wildfire. Levels of Biodegradable Organic
Material (hereafter BDOM) are an important measurement of ecological health [31],
and experiments are conducted on samples to better understand the precise nature
of a recovering environment. Analysis was done by the Brigham Young University
(hereafter BYU) Math F.I.LR.E. group.

Our second study is an observational study on the relationship between soil tem-
perature and volumetric water content (hereafter VWC). The ultimate goal of this

study is the application of thermometers to more precisely understand the dynamics



of VWC throughout a field. The application of this analysis could increase efficiency
of irrigation systems worldwide [32].

Our methods can be broadly summarized into two categories. In the first gen-
eral method, we use first principle models to understand the relationships at play
between soil and water. We then use traditional methods of data analysis to explore
correlations and make a predictive model. Hereafter, this will be referred to broadly
as the Mechanistic approach.

The second general method is to utilize Deep Neural Networks (hereafter DNN)
with a variety of inputs to generate a model, wherein the underlying relationships are
not explored, but emphasis is put into making accurate and precise predictions on
the data. Hereafter, this will be referred to broadly as the Characteristic approach.

We illustrate the relative pros and cons of the two approaches and utilize both,
to the extent possible, on each study. Results for the two studies are then discussed

along with potential ongoing research topics.

1.2 CHARACTERISTIC VERSUS MECHANISTIC METHODOLOGIES

The two research datasets we studied had many similarities, but they lent themselves
mathematically to very distinct problem sets. This made them ideal for highlighting
differences between traditional and modern analysis methods. We discuss the pros
and cons of each method further below.

Figure 1.1 contrasts the methodologies in a diagram. An example of what a Mech-
anistic Approach diagram might look like is given. Inputs are known and problem

formulation concerns their direct relationship/affect on the output. Then an ex-



ample of a Characteristic Approach diagram is given. The underlying relationships
governed by the hidden layer weights are not known, which relates to the output in

a non-linear manner.

a;
a;
E—
.—) hys(X)
a 3 Layer L,
+1
Layer L, Layer L.
+1 ’

Figure 1.1: On the left is the mechanistic approach, on the right is the characteristic
approach. Figure courtesy of Afroz Chakure, DEV.TO.

In determining whether or not to take the mechanistic or characteristic approach,

many different factors are considered. Below are three:

(i) The dataset available [11]. A large factor in constructing a DNN is the size/-
type of data available. Most DNN’s require large datasets, especially relative to
the questions that can be answered using a Multiple Linear Regression (here-
after MLR) approach. Additionally, in a DNN caution has to be taken to keep
from utilizing unbalanced data [12] or overfitting of data [17]. As a tradeoff,
less worry is given to factors such as independence between variables, which a

DNN can account for naturally, unlike a MLR model .



(ii)

(iii)

The problem formulation. For many problems, the characteristic approach an-
swers the question naturally using methods that are well understood and easily
generalizable. Given the novelty of machine learning techniques and how the
mathematical foundations of these are understood, often the characteristic ap-
proach may be adequate. If the problem of study is the relationship between
variables, then a DNN may not be well-suited. However, in predictive prob-
lem formulations, a DNN can often out perform a traditional MLR model as
it can handle non-linearities with relative ease and isn’t hampered by a need
to understand the underlying relationships or account for many confounding

factors.

The generalizability of the study. Many times a DNN can be constructed on a
particular dataset and yet found to work very poorly on similar datasets [15].
Because of a lack of understanding on the underlying relationships, DNN’s may
not generalize well to other scenarios. However, if the relationships between
variables is discovered in the traditional sense, then often we can account for
this in making a predictive model. Traditional methods work better in extrap-
olating outside of initial datasets, whereas DNN’s often fail to find anything
meaningful on data even marginally different from that in the training set. Re-

search into the underlying relationships governing a DNN is ongoing [21].



The two projects researched below provide comparison for the two methodologies.
In the Wildfire research, we found that mechanistic methods quickly and clearly an-
swered all of our questions and provided an understanding of the variables at play,
and yet the characteristic model based off the dataset never provided a good predic-
tive model due to unreliable training and imbalanced data [12]. Alternatively, in the
Irrigation research, we found that the underlying relationships of the physical mecha-
nisms were not understood well enough to model with a mechanistic approach. While
research in that is ongoing, we did find the data was well suited to a characteristic
predictive model. This suited the needs of the research group, as our primary inter-
est was in relative spatial predictive modeling of VWC. Research into the underlying
relationships is still ongoing. It’s important to note that in both scenarios, meth-
ods from one category may help guide another. This is illustrated in the Irrigation
research section below.

In all characteristic models, datasets are split into training and testing sets for
purposes of evaluating the model and minimizing loss. This keeps the DNN from

learning on its own testing set, introducing error into validation. [33]

1.3 NON-UNIFORM LABEL SMOOTHING

In regression DNN models, the objective is to create an architecture with a single

output layer. Its been found that utilizing large DNN models with many hidden



layers makes a model susceptible to overfitting and may make it generalize poorly [6].
Calibration of a DNN model is analogous to uncertainty quantification in a traditional
data analysis approach. Model predictions need a probability distribution placed
around the predicted value in order to be more generally applicable [18]. Calibration
in a DNN model is fine-tuning so that the predicted value is not only accurate
but consistently within a specific known range. This is best seen in classification
models where often a soft-max activation function will generate a probability vector
as an output. Calibration here can be easily measured as probability assigned (or
confidence) and can be leveraged towards uncertainty quantification. However, in
regression DNN models, activation functions on the final layer give only one output.
This means that “confidence” in the prediction is not measured.

One common remedy to this is a pragmatic approach of measuring the spread
of the data and arbitrarily drawing 95% confidence intervals based off a spread that
captures 95% of the predictions. However, in a time-series model, this is not possible
due to lack of replication.

The method that we propose is to translate the regression problem into a discrete
classification problem with ordinal categorical variables. Then using Non-Uniform
Label Smoothing (hereafter NULS) along with the cross-entropy loss function, we
appropriately incentivize the model to learn the underlying relationships [3], and
make predictions in such a way as to control the distribution of the outputs. A
brief explanation of the above methodology is given below. For details about the
mathematics of machine learning see [8]. For further information on the mathematics

of label smoothing, see [35]. For another instance of Non-Uniform Label Smoothing



classification, see [3].

A DNN consists broadly of an input layer, hidden layers, and an output layer.
The output layer is determined by the task which the DNN tries to accomplish. In
regression, the task of a DNN is to predict a single continuous variable as output. In
our research studies described below, this is BDOM or VWC.

In classification problems, a DNN will give a softmax vector output which repre-
sents a probability distribution among the different discrete categories. In order for
the model output to be a probability distribution, all probabilities must sum to one
and be in the range of zero to one. The softmax activation function preserves the
outputs of the DNN while giving it these qualities, associating larger input compo-
nents with larger probabilities by utilizing the formula below on the output vector

of the DNN:

2

e .
-, for 1 <i<n, z2=1(21,29, ..., 2,) € R".

o(2) = —2?21 oz
In this way, if z is the input vector, then 2 = (0(21),0(22),...,0(2,)) is the softmax
output vector. If we have an n-dimensional output vector from our DNN, the softmax
will act with the above formula on every element of our output vector to produce a
probability distribution vector of dimension n.

In a classification problem, the softmax output is compared with a “One-Hot
Encoded” target vector: a vector of all zeros besides the correct classifier. These
classifiers are unrelated to each other and the accuracy of the DNN is measured by
its ability to predict the correct classification. These are compared most often with

Cross Entropy [36]. In a uniformly label smoothed target vector, the vector is scaled

so that it also represents a probability distribution, but the incorrect classifiers are



given a weight corresponding to a fine-tuned hyper-parameter. This means that a
cross-entropy comparison will now penalize models for having large predictions in
incorrect classifiers even if overall the model predicts correctly. This keeps models
from becoming overconfident as a means of calibration.

Non-uniform label smoothing establishes a relationship between categories of clas-
sification. In the label smoothing process, instead of giving a uniform small weight
to the incorrect classifiers of the target vector, another method for distributing the
weights is utilized to keep the target vector as a probability distribution. The method

that we utilize is a normal distribution, as per the formula:

1 1 (o —x;\°
o(z; s xj,0) exp (—— (x ij) ), for 1 <i<n, z=(x,....,2,) € R,

- o\ 2T 2

where z; is the correct classifier, o is the fine-tuned standard deviation of the model,
and & = (¢(z1 : x5,0),¢(x2 : xj,0),...,0(x, : xj,0)) € R is the Non-Uniformly
Label Smoothed target vector. This creates a vector which assigns a relationship
between close ordinally related classifiers.

The most common loss function in state of the art classification DNN’s is cross
entropy [36]. The cross entropy could be thought of as measuring the similarity
between two probability distributions. Below is an explanation of how this loss
function behaves on the one-hot encoded, Uniformly Label Smoothed, and Non-
Uniformly Label Smoothed target vectors. The formula for cross entropy is given
below as a negative-log likelihood, where x is the treated target vector and z is the

output vector of our DNN, with =,z € R™

l(z,2) = — sz x log(z;).
i=1



Note from the formula above, if x is a target vector when x is one-hot encoded, only
one element of the summation is non-zero. This means that only one element of the
probability distribution z is taken into account in minimizing the loss function in the
corresponding DNN when the target vectors are one-hot encoded.
When the target vector is uniformly label smoothed, the entire probability distribu-
tion z is now taken into account. However, only in order to ensure that the model
doesn’t assign weights disproportionately large to secondary guesses. That is, the
model is penalized for uncertainty between two guesses.

When the target vector = is normally-distributed into a NULS target vector, its
clear that this loss function will incentivize the model to reflect that close association.
The probability distribution z is not only rewarded for a correct classification, but

for putting similar confidence in closely associated ordinal classifiers.

One-Hot Encoded Target Uniformly Label Smoothed Target Non-Uniformly Label Soothed Target
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Figure 1.2: Left, One-Hot Encoded. Middle, Uniformly Label Smoothed. Right, Normally
Distributed Non-Uniform Label Smoothed

Figure 1.2 shows an illustration of these three different classes of target vectors
side by side. In the example figure, class “4” is the correct label. All of these
reflect that, but it is clear that only the Normally Distributed NULS target vector

establishes association between closely related classifiers.



In theory, and as results show below, this allows training a DNN which utilizes
a classifier based architecture and yet mimics a regression DNN [3]. Utilizing a
normally-distributed NULS calibrates the accuracy versus precision of the model and
the probabilistic output can be used to measure directly the confidence with which
the model asserts a prediction. The standard deviation of the normal distribution
used in this smoothing is a hyper-parameter that is tuned until a reasonable trade-off

between precision and accuracy is reached.

CHAPTER 2. WILDFIRE RESEARCH

2.1 EXPERIMENTAL BACKGROUND

In 2018, the Spanish Fork River Watershed experienced a mega-fire, burning ap-
proximately 610 km?. Scientists fear that such events become more catastrophic as
humanity alters the ecosystem [5, 10]. Fire suppression may lead to buildup of un-
derbrush which could possibly lead to an increased frequency of mega-fires [19]. Our
study examines how mega-fires affect a watershed ecosystem, specifically nutrient
flow through the water.

Haley Moon headed a research project from the Abbott Lab at BYU to collect
water samples at 69 sites with differing frequencies. These sites are representative
of the differing water shed locations from sections of the larger Spanish Fork River
watershed, which were either highly affected by the mega-fire, moderately affected
by the mega-fire, or else not affected by the fire but in a similar ecosystem to the fire

range.
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Figure 2.1 shows the differing watersheds of the Spanish Fork River along with
the collection sites. Opacity relates to the overlap of watershed areas, and orange

indicates areas affected by the mega-fire.

0 ' " -
- S S S — _—
Y High Frequency Monitoring SLation
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= Watershed Boundary
= Wildfwe Extent (2018)

Figure 2.1: The Wildfire research watersheds and sample site locations. Figure courtesy
of the Haley Moon research team.

Multiple samples were taken from each location for replication, but analysis fo-
cused on samples taken for comparison in the Spring and Summer. The samples
underwent different experimental treatments. Some were given HCI to suspend mi-
crobial activity to be treated as a control. Others were given nutrients, and all were
given a microbial inoculum. They were then incubated for 28 days in either a light

environment or a dark environment. All samples, including the controls, were eval-
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uated at the end of the 28 day incubation period. This was done in order to remove
machine calibration as a potential confounding factor.

Figure 2.2 shows how the experiment was designed. Observations were split
categorically along Spring/Summer, as well as experimentally along light or dark

environments for incubation, as well as solution mixture.

Sample Setup- High Frequency Stations Sample Setup- Additional Sites
x l CL I NL ) NL tD
® o oC o e0(C 00 ' ® L 1 (
( Dark Light Common Microbial Nutrient A
Incubation Incubation Inoculum Solution ’

Figure 2.2: The Wildfire experimental setup illustration. Figure courtesy of the Haley
Moon research team.

After this period, a large number of optical measurements were taken from each
of the samples. Other measurements for each sample were known prior to the exper-
iment, such as the properties of the watershed area that the sample was taken from,
as well as the burn level of the same.

The goal of these tests was to evaluate the amount of Biodegradeable Organic
Material (hereafter BDOM) in the water. This was measured as a change in organic
material over the incubation period. Properties of the water sample were measured
in order to determine the health of the ecosystem from which the sample was taken.

Data analysis revolved not just around establishing correlation between different

12



factors, but in determining if measurements after incubation could have been pre-
dicted before incubation. For this reason, numerous characteristic and predictive
models were created for determining BDOM, among other factors, based off treat-
ment. Measurements that could have reasonably been known before the experiment
was conducted were included as input parameters.

Motivation for constructing predictive models is potentially knowing how land
will be affected by a mega-fire. Predictive modeling could inform biologists of po-
tential damage before field measurements have been completed, in order to know
where mitigating actions need to be taken to preserve the ecosystem following a fire
[10]. It is important for ecologists to understand nutrient availability, as many of
Utah’s water bodies, including Utah Lake in particular, already suffer from nutrient
problems.

To this end, the main result that was desired of our research group was on the
effect of the experimental treatment on the differing samples. We also considered
a BDOM predictive model to determine if the effects of the experiment could be
predicted before the incubation period. This model became the problem formulation
for the methodologies below.

For additional details about the biological experimental background, see the fol-

lowing articles on dissolved organic material [5, 10].

2.2 MECHANISTIC METHODOLOGY

Traditional Analysis of Variance (hereafter ANOVA) methods were adequate for

answering the questions of interest to the researchers. The following ANOVA table of

13



comparisons was found. Our choice of significance level was the standard o« = 0.05, as
neither error type seemed catastrophic. The null-hypothesis was that the treatments
produced no significant difference in the BDOM, and the alternative hypothesis was
that the treatments produced significantly different BDOM measurements. “Reject”
would then indicate that the null-hypothesis is rejected.

Table 2.1 shows an ANOVA table comparing treatments pairwise. CL stands
for “Control Light”, CD for “Control Dark”, NL for “Nutrient Light”, and ND for

“Nutrient Dark”.

] Treatments Compared H p-value \ Reject /Accept ‘

CL-CD 0.0337 Reject
ND-CD 0.8510 Accept
NL-CD 9.79e-14 Reject
ND-CL 0.0370 Reject
NL-CL 2.27e-8 Reject
NL-ND 2.14e-13 Reject

Table 2.1: An ANOVA table comparing treatments.

Similar ¢-tests found no significant differences between Spring and Summer trials
for the CD, CL, and ND trials, but there was a significant difference between the NL
trials for summer and spring with a p-value of 1.39¢ — 5.

Figure 2.3 shows the observed change in BDOM by both trial versus treatment.
This is a visualization of the observed quartile ranges, with circles representing out-
liers. While there were statistically significant differences between trials and treat-
ments, it is clear that the most stark contrast was in a Nutrient Light environment,
particularly in the summer.

This answered the main questions of interest to the researchers, but the further
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Figure 2.3: The Wildfire experiment BDOM observations.

hope was that perhaps a good predictive model could be made for predicting the
change in BDOM based off factors that were known before incubation. For our
purposes, the input parameters of our model included time of year, treatment, pho-
tographic properties, and properties of the watershed the sample was taken from,
such as elevation, slope, etc. Further details on variables can be found in the related
works [5, 10]. The output to our model was then the change in measured dissolved
organic carbon, or BDOM.

A multiple linear regression model was trained utilizing the Scikit-learn python
package. We mainly used 95% confidence intervals as the main predictor. As the re-
sults show, we constructed a model that confidently predicted when a “catastrophic”
change in BDOM was going to take place. While the model could not accurately
predict BDOM, it was capable of indicating when a significant change was going to

take place.
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2.3 (CHARACTERISTIC METHODOLOGY

The Wildfire research was an example of when the mechanistic method better an-
swered the questions of interest than the characteristic method. Because the ques-
tions of interest related to significance of treatment, and the relationships studied
are relatively straightforward, traditional analysis methods better answered the re-
searchers main questions.

When it comes to predictive modeling, a multiple linear regression model was
found to be adequate, but we still constructed a DNN predictive model on the data.
After fine-tuning, the result performed inferior to the MLR model for reasons which
we discuss below.

The fine-tuned model consisted of 18 inputs discussed in the experimental back-
ground. Each layer utilized a Rectified Linear Unit activation function with parame-
ters numbering 128, 64, 16, and 1 for layers 1, 2, 3, and the output layer, respectively.
We utilized ADAM for the optimizer with a learning rate fine-tuned at 0.0001. The
loss function was the Mean Square Error, and we utilized a batch size of 20 data
points training over 30,000 epochs. Training for this number of epochs overfit the
model, but the point at which the model overfit was inconsistent, and so validation
of the model was implemented on the weights of the model before overfitting as
determined by which epoch minimized the loss function.

Figure 2.4 illustrates some of the trouble the DNN had. The Wildfire DNN loss
function is on the left. Fine-tuning showed that it converged inconsistently with the
number of training epochs before overfitting fluctuated. Its predictions are on the

right, and the loss never achieved anything comparable to the mechanistic method.
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Multiple iterations of training the DNN, with different fine-tuning of parameters, did

not noticeably affect the model.

Model Loss over Training Predictions from our DNN
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Figure 2.4: The Wildfire DNN loss function is on the left, visualizing loss versus training
epoch. The predictions for the most accurate model predictions are on the right.

We consider now some theories as to why this DNN performed so poorly.

The first problem we ran into was quality of data, specifically its imbalance [12]
and size [29]. Typically in a machine learning setting, models train on thousands of
examples to trillions [16], however we had less than 200 data points. The amount
of data required for machine learning depends on the task to perform [29], but it
was clear that we did not have enough data for a DNN to explain the underlying
relationships between the variables.

Additionally, the data was unbalanced [12]. This is more noticeable with small
data sets, but only a quarter of the dataset was in the Nutrient-Light treatment,
which experienced the most significant change in BDOM. Since many of these samples
were themselves still within range of other treatments, it led to a dataset that was
not equally balanced between differing outcomes. This could be remedied with a

larger dataset to pull from, but unfortunately no larger dataset is available.
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Another problem that was discovered in the DNN architecture was that the loss
function never seemed well suited to machine learning optimization. The DNN was
not able to reliably arrive at a minimum when training, and so as it trained over
epochs, it was continuously fluctuating.

It is possible that there is a scenario wherein a DNN could run a good predictive
model on BDOM changes in Utah Lake, but the data we obtained posed significant
problems. Potentially, analysis could be conducted in the future utilizing machine

learning techniques other than DNNs, or else utilizing differing loss functions.

CHAPTER 3. IRRIGATION RESEARCH

3.1 PHvYSICAL PROBLEM FORMULATION

Many farmers utilize a central pivot irrigation system for watering their fields [23].
Historically, these irrigation systems have utilized a uniform watering distribution,
watering all sections of the fields evenly. While this is adequate, the obvious question
is if some sections of the field are being watered more than is necessary, and if water
could be saved by utilizing a non-uniform watering distribution. Recent technological
advancements have made Variable Rate Irrigation (hereafter VRI) systems more
common and affordable, increasing the desire for research on how to allocate resources
[23].

Unfortunately, VWC sensors remain quite expensive, are relatively fragile, and
man-power intensive to operate. This makes the prospect of monitoring soil VWC

and watering where appropriate infeasible. However, temperature sensors do not
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struggle from any of these drawbacks. BYU, in conjunction with Dr. Neil Hansen, is
in the process of synthesizing temperature sensors which are cheap, relatively durable,
miniaturized, and which can transmit data wirelessly to a collection center. This
motivates research to develop a predictive model for soil VWC from soil temperature.

Figure 3.1 shows what the data initially looked like. The VWC and Temperatures
for Site 1 are on the left, plotted against the time in the growing season. On the
right, a scatter plot of VWC against Temperature. This plot obviously hints, as first
principles affirm, that the relationship between the two is non-linear and indirect,

but present [9)].

Volumetric Water Content and Soil Temperature Over Time
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Figure 3.1: The VWC and Temperatures for Site 1 are on the left, indexed chronologically
by sample, and a scatter plot of VWC against Temperature on the right. The non-linearity
invalidates the assumptions for a 95% confidence interval.

It was presumed going into the experiment that multiple factors would be con-
founding in a direct statistical analysis [6, 9]. Many of these, however, could be
controlled for. For example, while having VWC sensors all throughout a field is
infeasible, having a single centralized sensor for relative data comparison is feasible.
The ultimate goal is to remove VWC sensors completely. Other confounding fac-

tors include soil type, atmospheric temperature and pressure, relative humidity and
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precipitation, solar radiation, wind speeds, and others.

Data was collected for use by Dr. Neil Hansen’s lab from the BYU Department
of Plant and Wildlife Sciences. Research has been done on the physical foundation of
this problem [9]. Numerous studies have defined the relationship between soil tem-
perature and VWC as is discussed in the mechanistic methodology below. However,
creating a predictive model between the two poses a significant problem.

We formulated the problem from a predictive standpoint of first finding models
that would relatively accurately estimate VWC from soil temperature, and then
applying these to predict relative spatial VWC distribution with a centralized sensor
for catching confounding factors.

Most of the mechanistic methodology below focuses on predicting VWC from
soil temperature as our data suited this problem best. Characteristic analysis was
conducted on predicting relative spatial VWC distribution as that was the practical
application of the research. It is important to note that our dataset was not adequate
to accurately solve either problem completely, but we still found many statistically
significant results and correlations.

For details about observational agricultural background, see the following articles
on predictive methods of VWC for utilizing VRI more effectively [7, 22, 32], and new

methods for utilizing satellite imagery in application [30].

3.2 MECHANISTIC METHODOLOGY

Initially we studied the underlying relationships governing soil temperature and

VWC. Much work has been done on this in agricultural sciences [9], and lots of
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research guided our analysis. Ultimately this did not succeed in producing a reliable
predictive model, however we did highlight a lot of interesting correlations, which
further research will utilize in determining underlying relationships.

It was assumed from first principles models that temperature is not linearly cor-
related to VWC, however they are indirectly connected by the heat equation [9].
Water trapped in soil changes its heat capacity and thermal conductivity, which in
turn changes its ability to diffuse heat through the soil. This leads to different tem-
peratures for soil samples of different VWC. Utilizing the heat equation for mapping,
we let k be the diffusivity coefficient, U, be the derivative of the temperature with
respect to time, U,, be the second derivative of the temperature with respect to
depth of the soil, C' be the thermal conductivity, p be the density of the soil, and k
be the heat capacity. Then assuming the thermal diffusivity constant x is constant,

the equation which we tried to solve was given below:

Ut = HU:E;B.

We measured temperature, and tried to identify the diffusivity coefficient and heat
capacity. We anticipated a strong correlation between the heat capacity and VWC.

Figure 3.2 illustrates our Data Assimilation generalized method, which is dis-
cussed more below. On the left is an example of Vandermonde Polynomial Inter-
polation to a single day from our dataset. We ultimately found that an 8th-degree
interpolation best refined the data, without observing artificial fluctuation, as each
day reflected 98 observations. Interpolating the data was necessary for utilizing it

as Dirichlet boundary conditions to the heat equation. On the right can be seen a
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solved heat equation, giving a temperature map.

Temperature

—— Estimate
—— Actual

—— 6in Actuals
~—— 6in Preds
—— 18 in Actuals
—— 18 in Preds
—— 30in Actuals
—— 30 in Preds

Temperature

I O s e e —— —
~1.00 —0.75 —0.50 —0.25 0.00 025 050 0.75 100
Time Indexing

Figure 3.2: On the left is single day polynomial interpolation, on the right we utilize Crank-
Nicholson to solve the heat equation.

The first problem was that the data was not precise nor frequent enough for
solving the heat equation to the required accuracy. In order to account for this, we
used polynomial interpolation to fit a curve to the observed temperatures, and to
synthesize data that fit the curve to the frequency that we needed. When utilizing
polynomial interpolation in a predictive model, care needs to be taken to avoid
extrapolation beyond the dataset [20]. However, we found that the temperature was
a continuous non-chaotic variable, and so the synthesized data was reasonable for
our purposes, as we did not intend to make extrapolations far outside of the observed
data range.

With the synthesized temperature data, we blocked the observations into 24-hour
periods. The assumption was that VWC changed relatively slowly in comparison to
temperature, and so we assumed a constant diffusivity coefficient over the 24-hour
period and utilized the synthesized data as Dirichlet boundary conditions for solving

the heat equation. We used a sophisticated implementation of the Crank-Nicholson
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[34] method to solve the heat equation rapidly. For each solution to the heat equa-
tion, we obtained a diffusivity coefficient x, and used that to predict intermediary
temperature values of the soil. We utilized the Euclidean norm of the difference
between the prediction and the actuals as our loss function. We used Scipy’s mini-
mize function, with the Levenberg-Marquardt Algorithm [25], to minimize the loss
function and obtain the diffusivity coefficient of best fit.

The ultimate goal was feature engineering in hopes that the diffusivity coefficient
would correlate to VWC strongly. It did not ever correlate above r? = 0.1, being
statistically insignificant. Possible reasons are the assumptions that the diffusivity
coefficient was inversely proportional to VWC or that the diffusivity coefficient was
relatively constant with respect to the 24-hour periods of observation.

We did find that the loss function was easily minimized, with no worry that
the diffusivity coefficient was difficult to obtain. We also found that the best fit
coefficient did not vary chaotically over time, but consistently.

The goal for ongoing research is to be able to isolate the thermal conductivity
of a soil sample over a related 24-hour period in order to better get an estimate of
the heat capacity in relation to the diffusivity coefficient. In principle, this should
improve the estimated relationship.

From the heat equation, we believed that the rate of change of temperature
would be more highly related to VWC than temperature itself would. This was also
motivated by soil temperatures’ dependence on atmospheric temperature, something
which is not related to the VWC. We attempted a few different methods to control

for this, but did not find any statistically significant correlations.
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One common practice in this area of research is to measure the fluctuation of
soil temperature over every 24-hour period [6]. This can be thought of as a feature
related somewhat qualitatively to the soil heat capacity. This did show significant
correlation and we ultimately used this variable in our characteristic approach.

Another common practice is to account for time-serial correlation in the data by
filtering out the high frequency change of the temperature. This was again another
type of feature engineering. We did this by taking a 24-hour rolling average of each
temperature measurement. This did indeed increase correlation significantly over
temperature measurement and ultimately this feature did end up in our characteristic
approach.

The results of this approach were less than satisfactory. Constructing a multiple
linear regression model utilizing any reliably attainable factors did not lead to a
predictive model that gave the kind of precision desired. While the model was often
comparably accurate, the variability of the differing factors when their relationships
were not entirely known led to a high variance in the output of the predictive model.
This in turn led to large fluctuating predictions which were often quite far from the
actual data. This is what we expected of a MLR model with multiple co-linearities
[28].

In a multiple linear regression model, it is common practice to remove variables
which are not statistically significant to your model [14], as well as trying to account
for co-linearities which confound the model assumptions [24]. However, due to a
lack of knowledge of how variables relate directly to the prediction, beyond simple

correlation, this is not plausible.

24



It is important to note that research into the underlying relationships did help
to analyze which variables should be utilized in the approach below. Additional

research into the underlying relationships of this mechanistic model is still ongoing.

3.3 CHARACTERISTIC METHODOLOGY

For the characteristic method, the motivation was to create a deep neural network
that would predict well the VWC from a list of variables which would be likely
attainable in application. This meant that temperatures were going to be the main
contributor to the neural network, but that other easily attainable factors would be
included as well.

It was assumed that, in practice, a central VWC sensor could be placed in a field
for controlling confounding factors and calibrating, as could an atmospheric sensor.
A model that utilized this central VWC sensor was called an anchored model.

In much of the research into similar DNN models, common factors utilized were
mean soil temperature, minimum and maximum soil temperatures, and soil tempera-
ture fluctuation over 24 hour periods [6, 2, 4, 7]. Other research often included mean
air temperature, precipitation, humidity, atmospheric pressure, and other variables.
Most of these are attainable on atmospheric sensors, which can be easily maintained.
It was assumed then in application that such factors could be present in the DNN.

The DNN models utilized 18 parameters as inputs, with 3 hidden layers, contain-
ing 128, 64, and 32 parameters respectively. All three hidden layers utilized RelLU
activation functions. For the regression models, the output layer had one parame-

ter, and for the NULS models, the number of outputs was a fine-tuned parameter
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representing the range of possible VWC predictions. All models utilized 0.0001 as
the learning rate with the NULS model using a cross entropy loss function and all
regression models using the mean square error loss function. Training took place in
batches of size 32, over 10,000 epochs. The largest difference between models was
the method of treating the target vector, as discussed above. Predictions of these
models were VWC values.

In general, the DNN approach made a model that fluctuated less than both
the MLR and the data. It often was marked by a small change when the actual
VWC fluctuated more dramatically, and captured well small changes in the VWC.
This was contrasted with the MLR model, which would make very dramatic regular
fluctuations.

Figure 3.3 illustrates the loss and predictions of the different DNN Models. On
the left is the first model DNN Loss function, trained over epochs. The monotonic
nature of this curve is what indicates a well-trained DNN [13] and should be compared
to the Wildfire DNN in section 3.3. It indicates that the model has achieved a local
minimum [13]. On the right is a sample DNN set of predictions on the VWC over
time compared to actual observations. After this training, we addressed the question
of how the model did in spatial relative VWC comparisons. To rephrase, did it rank
the sampling sites from wettest to driest in the correct order a statistically significant
portion of the time?

With 4 sites, yielding 24 possible permutations of sites, we would expect a model

100

that behaved poorly in this aspect to yield approximately 47 ~ 4.16% accuracy.

The model obtained an observed accuracy of 43%, which is statistically significant
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Figure 3.3: On the left is the first model DNN Loss function. On the right is a sample
DNN set of predictions on the VWC over time, compared to actual observations.

and shows that the model did indeed rank the data from wettest to driest, to an
extent. This is a simple indication study: specifically, this method of spatial rela-
tivity ranking does not take into account the margins of inaccuracy, making results
indicative, but not conclusive.

Fine tuning was conducted on three distinct machine learning models, the initial
regression DNN, the anchored DNN, and the NULS DNN. The initial regression
DNN and anchored DNN differed only in that the anchored DNN was given the
temperature of one site as one of its input values, mimicking a central atmospheric
sensor. The NULS DNN utilized the Non-Uniform Label Smoothed target vectors,
with a classification architecture. It is important to note that in a DNN, unlike in
a MLR model, uncorrelated factors in your model are often less detrimental as the

neurons connecting to them will simply die off [26].

Model 1 : The input was 24 hour sections of the dataset. The variables were max tem-
perature over those periods, min temperature, mean temperature, fluctuation

max minus min). air temperature, humidit recipitation, atmospheric pres-
) p ) Yy, P p ) p p
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Model 2

Model 3

sure, wind speed, and date. An MLR was run on these data points first, in
order to determine the correlation the model could reasonably attain, measured
from its r? value. The MLR model had r? = 0.653. Date was used as a stand
in for amount of vegetation over the growing period. All of the temperature
values were motivated from the analysis done by others in similar works [2, 6].
Humidity, precipitation, atmospheric pressure, and wind speed were all moti-

vated by both prior works, and first principles.

: For the second model, we utilized site 2 as an anchor point. We wanted to
test the assumption that a farmer would have a single central atmospheric and
VWC sensor, which could be used to help calibrate the DNN. For this DNN,
we passed in the maximum, minimum, mean, and fluctuation temperatures of
site 2 as well. Site 2 was utilized as it had the most consistent dataset, allowing
it to make a good “anchor”. These were the only differences between models

1 and 2.

: For the third model, we utilized a NULS DNN on the same variables as in
model 1. We had to fine-tune as hyper-parameters the length of the categorical
variables vectors, as well as the number of categories in that vector, and the
standard deviation of the normal distribution utilized in the NULS (as it was

always assumed the observation was going to be the mean). Note that the
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NULS model did not take site 2 as an anchor.

In order to compare the outputs of these models, we couldn’t compare the losses
directly, due to differing loss functions. We used the model to predict actual values
of the VWC at given dates for the 5 sites they had in common, sites 1, 3, 4, 5 and 6,
and then found the 2-norm of the differences between the predicted and the observed
VWC values. This allowed for comparison between the models in a way that would
be quantitatively analogous.

This was still not a perfect comparison method. The MLR model, for example,
did get results for predictions comparable to the NULS DNN as far as error of
predictions goes. However, the MLR model had extremely high variation, with wild
fluctuation between accurate and inaccurate predictions and many outliers.

The first model performed well and anchoring the model with the site 2 VWC
information did improve it, but only marginally. The largest improvement to the
DNN came however with the NULS DNN, with the loss being orders of magnitude
lower.

Figure 3.4 compares the losses of the differing models. Note the log scale on
the y axis. On the right is a comparison of the predictions of the models on site 1,
compared to its actual observed value.

Figure 3.5 compares a little more clearly the model predictions to their respective
observations. On the left we compare the anchored DNN predictions of VWC with

the observations. This did not visibly outperform the initial DNN, much to our
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Figure 3.4: On the left is a comparison plot of the loss of the differing models. On the
right we compare the model predictions to their observed values.

surprise. On the right we have the NULS DNN. Note that while the NULS is most
accurate, it did seem more likely to have outliers in the predictions. This is likely an

artifact of unbalanced data [12], and the NULS DNN architecture.
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Figure 3.5: On the left we compare the anchored DNN predictions of VWC with the
observations, and on the right only the NULS DNN.

The loss is best viewed on a log-scale. The NULS DNN was still sub-optimal.
Fine-tuning the hyper parameters helped significantly, but its clear that the DNN
behaved as a classification DNN, and not as a regression DNN. Classification DNN’s
need a much more balanced data set than a regression model, that is, you’d like to
have equal amounts of training data for each category you're classifying into. That

was not possible for our application which leaves open the possibility that, should
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a larger dataset become available, further improvements to the NULS DNN could
still be made. This would likely help with some errant classifications seen as large
fluctuations in the predictions of the NULS DNN.

The results were, we found it feasible that temperature can be used to predict
VWC in soil samples, though more data would likely increase the capability to do
so. Generalizing these results to other fields is not statistically validated, given all
of the data was from one field. Extrapolation in a characteristic model is even less
likely, and so if the results were to be replicated in other environments, it is likely
much more data would need to be acquired but that extrapolations could then be

made [2].

CHAPTER 4. RESULTS

4.1 WILDFIRE RESEARCH

We were able to answer all of the researchers’ questions of interest using mecha-
nistic methods. Many of the questions on relationships between variables, and so
characteristic predictive models would not have been sufficient there regardless.

We found that the MLR predictive models produced a better prediction on the
change in BDOM than the DNN models. This is likely due to a number of fac-
tors, which are discussed more in section 3.3. However, it is clear that the Wildfire
Research did benefit most from the traditional methods of analysis.

Figure 4.1 shows some predictions of how BDOM would change from our MLR

predictive model. Its important to note that our goal was not actually to predict
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accurately BDOM, but to get a solid indicator for when BDOM would change sig-

nificantly.

Confidence Interval Predictions Test for BDOM
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Figure 4.1: The BDOM above is predicted with a 95% confidence interval.

We found that burn did significantly affect BDOM. If we think of BDOM as a
measure of change in nutrients through an ecosystem over time, this means that fires
do drastically affect BDOM.

The ANOVA table in section 3.2 also indicates that different treatments of a
watershed do affect how nutrients flow through the system. The only treatments
wherein we failed to reject this null-hypothesis was in the treatment of ND and CD,
as they were both incubated in the dark. The treatment that had the most significant
impact on BDOM was the NL treatment, as the ANOVA table shows most significant
p-values in pairwise comparisons of NL, and as is visually indicated by the box plots
of the BDOM by treatment.

Our ability to predict BDOM is significant scientifically as it can indicate where
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a drastic change in a watershed environment may occur, to an extent. Its important
to note that the samples were not chosen at random, and so the results of this
study to not generalize out directly to other watersheds, but the results are certainly

indicative of a broader natural phenomenon.

4.2 TRRIGATION RESEARCH

In the Irrigation research, we were not trying to determine underlying relationships
between the variables. Most of those have been, to an extent, fleshed out in past
studies. We were instead simply trying to build a predictive model from available
data, and see how well it could be applied to solve our problem formulation.

We found that the characteristic approach was very capable to solve this problem.
In the mechanistic approach, we had hoped to engineer a feature vector (diffusivity
coefficients) which would be inversely proportional to the VWC, as first principles
models would suggest. However, confounding factors have kept us from getting a
strong correlation of these variables yet.

Fortunately, our data was well suited for a characteristic approach. We were able
to get solid predictions of VWC from temperature, as shown in section 4.3. Further
improvements are highly likely, and while our models are not generalizable to other
environments, they indicate that it is likely, given enough data, such a model could
be constructed.

Our NULS DNN performed the best on this data set, often getting quite accurate
predictions. However, it is clear that our data was not as well conditioned for a

classification DNN as it was for a regression DNN. This is something that again
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could be remedied with a larger data set.

The NULS DNN did require fine-tuning of the standard deviation as a hyper-
parameter, in order to achieve the best results on accuracy versus precision. Accuracy
for us was measured as the norm of the difference between the observations and
the predictions, and precision was measured as the percentage of predictions inside
the 95% confidence interval, as would be indicated by said standard deviation. A

numerical analysis of this is given in the results on NULS below.

4.3 (CHARACTERISTIC VERSUS MECHANISTIC DATASETS

The above results indicate that there are clearly times when Characteristic or Mech-
anistic methods are preferred. The largest factors to take into account in predictive
modeling is the type of data available. If the question of interest is on the underlying
relationship between variables, than the mechanistic method will be superior. How-
ever, in constructing a predictive model, other factors must be taken into account.

Size of the data set is an important factor to consider. We found that the size
of the data set was impactful on the quality of the predictions in a characteristic
approach, but that it was relatively unimportant in the mechanistic approach. While
we did not conduct analysis on any datasets besides those discussed above, outside
research seems to validate the claim that generalizability in a DNN is a factor of the
size of the data set.

We also found that the dataset was very impactful on the type of DNN that could
be constructed. The balance of data in a DNN is important to make sure that the

loss function is not “gaming the system”, minimizing by skewing relationships, for
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example. Data sets that were also very specific do not generalize well, and in a DNN
regression model, this may cause high variation, as seen in the NULS DNN.
Additionally, more statistical inference can be made from a mechanistic model
than from a characteristic one. Because mechanistic models have been more heavily
researched, there are often inferences on the coefficients of these models, with corre-
sponding confidence intervals, p-values, etc. These are of course lacking in a DNN,
where such coefficients are often either unknown, or represent non-linear abstract

relationships that we do not wish to study.

4.4 NON-UNIFORM LABEL SMOOTHING AND ITS DRAWBACKS

We were very excited about the results of the NULS DNN. Non-Uniform Label
Smoothing has never, to our knowledge, been used in a regression context such as
this before, and the fact that the results were not only comparable, but exceeded
those of a traditional DNN motivate further research.

This is only further motivated by the fact that typical classification DNN’s, such
as a NULS DNN, are overly susceptible to unbalanced data, such as those we received.
Its possible then that our NULS DNN could be further improved if a data set where
a balance of those ordinal categorical responses we'’re interested in were available.

The tradeoff for such a balance would be “throwing out” data, in order to train
your model, balancing the data often requires randomly selecting samples from sets,
to ensure comparable size. This is not something however that can be tested on our
data, due to size constraints.

It is further interesting to note that our original reason for attempting the NULS
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DNN was to obtain some sort of uncertainty quantification for our predictions. This
was validated after training the model. It is clear from the results that there were
times when the model simply underperformed, and for those sites the uncertainty
quantification was inaccurate. However, in 3 of the 6 sites, the 95% confidence
interval was found to be accurate.

Figure 4.2 shows most clearly the results of our differing NULS models. We ran
the NULS DNN for a range of standard deviation hyper parameters, as part of the
fine-tuning process. We compare on the left the different accuracies of each model (as
measured by the 2-norm of the difference between the predictions and observations),
and on the right we compare the differing precisions of each model (as measured by

a percentage of observations inside the predicted 95% confidence interval).
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Figure 4.2: On the left we measure accuracy, and on the right we measure precision.

4.5 DISCUSSION

It is the assertion of this project that the modern Data Analyst will need to be able
to utilize both traditional mechanistic and modern characteristic tools to handle

today’s dynamic problems.
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An ever increasing abundance of data, combined with novel research into Deep
Neural Network architectures, means that more and more research will be done with
exciting predictive models. However, its clear from the results above that there will
always be a time and a place for the mechanistic approach.

As for the novel Non-Uniform Label-Smoothing DNN applied to a regression
problem, we don’t propose to have completely researched this model. We only applied
this to our datasets, and found it to be superior. However, we did observe strange
variations in the data which suggest that, if given a larger dataset, this model could
be improved.

Its also important to note that we did not study the generalizability of such a
method. We would like to believe that our method could create a model which, given
the right dataset, could give a generalizable method for analysis of soil versus water
with a specific uncertainty quantification, but we really only breached the research
on this to prove feasibility.

This motivates further research into NULS DNN'’s; to see if truly well balanced
large datasets could be used for extremely accurate regression solutions, and to see if

they really could be the answer to highly efficient Variable Rate Irrigation systems.
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